Evidence for a second interaction between the regulatory amino-terminal and central output domains of the response regulator NtrC (nitrogen regulator I) in Escherichia coli.

نویسندگان

  • Albert Carson Harrod
  • Xiaofeng Yang
  • Matthew Junker
  • Larry Reitzer
چکیده

Nitrogen limitation in Escherichia coli activates about 100 genes. Their expression requires the response regulator NtrC (also called nitrogen regulator I or NR(I)). Phosphorylation of the amino-terminal domain (NTD) of NtrC activates the neighboring central domain and leads to transcriptional activation from promoters that require sigma(54)-containing RNA polymerase. The NTD has five beta strands alternating with five alpha helices. Phosphorylation of aspartate 54 has been shown to reposition alpha helix 3 to beta strand 5 (the "3445 face") within the NTD. To further study the interactions between the amino-terminal and central domains, we isolated strains with alterations in the NTD that were able to grow on a poor nitrogen source in the absence of phosphorylation by the cognate sensor kinase. We identified strains with alterations located in the 3445 face and alpha helix 5. Both types of alterations stimulated central domain activities. The alpha helix 5 alterations differed from those in the 3445 face. They did not cause a large scale conformational change in the NTD, which is not necessary for transcriptional activation in these mutants. Yeast two-hybrid analysis indicated that substitutions in both alpha helix 5 and the 3445 face diminish the interaction between the NTD and the central domain. Our results suggest that alpha helix 5 of the NTD, in addition to the 3445 face, interacts with the central domain. We present a model of interdomain signal transduction that proposes different functions for alpha helix 5 and the 3445 face.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC.

We report that the ntrB and ntrC proteins of Bradyrhizobium sp. [Parasponia] strain RP501 share homology with other regulatory proteins. There is extensive conservation of C-terminal regions between products of RP501 ntrB; Klebsiella pneumoniae ntrB; Escherichia coli envZ, cpxA, and phoR; Agrobacterium tumefaciens virA; and, to a lesser extent, E. coli cheA. There is also extensive conservation...

متن کامل

In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli

  Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...

متن کامل

Phosphorylation-induced signal propagation in the response regulator ntrC.

The bacterial enhancer-binding protein NtrC is a well-studied response regulator in a two-component regulatory system. The amino (N)-terminal receiver domain of NtrC modulates the function of its adjacent output domain, which activates transcription by the sigma(54) holoenzyme. When a specific aspartate residue in the receiver domain of NtrC is phosphorylated, the dimeric protein forms an oligo...

متن کامل

Phosphorylation-independent dimer-dimer interactions by the enhancer-binding activator NtrC of Escherichia coli: a third function for the C-terminal domain.

The response regulator NtrC transcriptionally activates genes of the nitrogen-regulated (Ntr) response. Phosphorylation of its N-terminal receiver domain stimulates an essential oligomerization of the central domain. Deletion of the central domain reduces, but does not eliminate, intermolecular interactions as assessed by cooperative binding to DNA. To analyze the structural determinants and fu...

متن کامل

Nitrogen stress response and stringent response are coupled in Escherichia coli

Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2004